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1.0 SUMMARY 

  

The goal of the current line of research is the prevention of performance decrements associated 

with mental overload during remotely piloted aircraft (RPA) operations. This can be 

accomplished using physiological signals as inputs to models that sense moments of high 

cognitive workload. When high workload is detected, augmentation can be provided to reduce 

workload and improve performance. Performance, subjective workload, cortical, cardiac, 

respiration, voice stress, and ocular data were collected in surveillance and target tracking 

missions. Several physiological measures were sensitive to changes in task load as evidenced by 

performance and subjective workload data. The primary focus of the current study was the 

evaluation of several real-time workload  assessment models. Potential future applications of this 

research include closed loop systems that employ advanced augmentation strategies, such as 

adaptive aiding. By identifying physiological measures well suited for monitoring workload in a 

realistic simulation, this research advances the literature toward real-time workload mitigation in 

RPA field operations. 

 

2.0 INTRODUCTION 

 

U.S. armed forces are increasingly using RPA to accomplish missions in hostile environments 

because of their standoff capability in areas that are difficult to access or otherwise considered 

too hazardous for manned aircraft or personnel on the ground (U.S. Department of Defense, 

2011). It has been documented that the military intends to increase the number of RPA in service 

while simultaneously reducing the number of operators (Dixon, Wickens, & Chang, 2004). One 

proposal to accomplish this is to allow operators to control multiple aircraft simultaneously 

(Rose, Arnold, & Howse, 2013). However, piloting one aircraft remotely is a complex task, and 

operating additional aircraft could increase task demands sharply. This is potentially problematic 

because cognitive overload can negatively impact performance (Young & Stanton, 2002). One 

solution to offset the risk of increasing the operator-to-vehicle ratio, as well as conventional 

sources of operator overload, is to monitor operator workload in real-time and provide 

augmentation before performance decrements occur. Physiological measures, which have been 

shown to reflect changes in cognitive workload in various environments (e.g., Wilson & Russell, 

2007), are well suited for this goal. The current research is directed toward workload monitoring 

using physiological measures.  

 

The Sense-Assess-Augment (SAA) framework was developed by researchers Galster and  

Johnson (2013) to detect and mitigate cognitive overload. This framework can be applied to a 

wide range of task domains. In general, the framework serves to sense the operator’s 

physiological measures, assess their cognitive state using models or context-sensitive assessment 

tools, and augment the operator’s performance before performance decrements may occur. The 

SAA framework was applied in a series of recent experiments using an RPA task environment.  
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First, physiological features that were sensitive to changes in workload were identified.  Next, 

models were evaluated that utilized these features to assess the cognitive state of  RPA operators. 

The goal of the model evaluation was a correlation between model output and subjective 

workload rating of r ≥ 0.85. When the validated model detects cognitive overload (high 

workload), augmentation can then be implemented to reduce high workload and improve 

performance. 

 

Before physiological measures can be used to monitor workload in RPA field operations, 

additional research is needed using realistic task environments. This is because the usefulness of 

each category of physiological measures (cortical, cardiac, etc.) for assessing workload likely 

depends on the nature of the task being performed. Hankins and Wilson (1998), for instance, 

found that cortical measures were sensitive to workload during mental calculation, cardiac 

measures were related to workload during flight segments heavily dependent on instrument use, 

and ocular activity was associated with workload during visually demanding flight segments.  

In addition, there is a need to develop an accurate physiologically-based workload model that 

operates in real-time with a high level of resolution. Wilson and Russell (2007), for instance, 

used an artificial neural network (ANN) model to monitor workload in real-time for an RPA 

task. However, their model only had a discrete (low vs. high) workload estimate. The current 

research attempts to build on this line of research by evaluating several models (see Durkee, 

Geyer, Pappada, Ortiz, & Galster, 2013) that provide a workload estimate on a continuous scale 

(0-100) within the context of a realistic RPA task environment. A continuous, rather than 

discrete, output affords the opportunity to better define thresholds necessary for augmentation 

control. A continuous scale will also provide more resolution for future applications that may 

benefit from intermediate levels of augmentation.  

 

To address the need for the development of a realistic task environment in which to evaluate 

physiological measures and workload assessment models, a series of experiments were designed 

using a high-fidelity RPA simulation. Two RPA subject matter experts (SMEs) were interviewed 

to identify factors that can impact workload in surveillance and target tracking tasks. As an initial 

validation effort, two smaller scale studies were conducted based on the information obtained 

from these interviews. The first study utilized a surveillance task in which three factors identified 

by the SMEs (degraded sensor feed, number of distractor entities, and irrelevant 

communications) were combined in a within subjects factorial experiment. Subjective workload 

was higher and performance was lower in conditions with degraded sensor feeds and higher 

number of distractors. Thus, the degraded sensor feed and distractor manipulations were 

identified as effective, and were incorporated into the current research. These manipulations will 

be described further in the method section. The irrelevant communications manipulation 

involved the addition of extraneous communications, which were expected to increase workload 

by distracting participants from the task. The presence of these irrelevant communications did 

not impact subjective workload or performance, and thus the manipulation was not included in 
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the current experiment. Because this was an exploratory study, a small number of participants 

were used, and thus the study was not published. However, it was a very useful pilot study 

because two of the three experimental manipulations were found to have a significant effect on 

subjective workload. 

 

In a follow up investigation (Hoepf, Middendorf, Epling, & Galster, 2015), a tracking task was 

developed and three workload factors identified by SMEs were incorporated into a within 

subjects factorial experiment. The manipulations were route type (country vs. city), number of 

RPA (one vs. two), and haze (off vs. on). City routes and two RPA conditions resulted in higher 

workload and reduced performance, and thus these manipulations were incorporated into the 

current research and are further described in the method section. The haze manipulation involved 

a change in the weather conditions. Settings in a virtual reality scene generator were used to 

create a hazy / foggy condition that was expected to make it more difficult to complete the task 

due to reduced visibility than the sunny / clear condition. The haze manipulation, however, did 

not significantly impact subjective workload or performance, and was therefore not used in the 

current research.  

 

In the current investigation, the factors identified to drive workload in the two exploratory 

studies were implemented in a larger scale study. The surveillance task was combined with the 

tracking task into a single trial with a brief pause between the two tasks. During this pause, 

subjective workload ratings were collected. The task environment was then used to evaluate 

several previously developed physiologically driven ANN models of workload (see Durkee et 

al., 2013). This experiment also provided the opportunity to incorporate and evaluate new 

physiological features not available in the exploratory studies. The physiological measures 

utilized in the current research generally fall into five categories including cortical, cardiac, 

respiration, voice, and ocular measures. 

 

2.1 Physiological Measures 

 

Cortical, cardiac, respiration, voice, and ocular measures are all potentially well suited for 

monitoring workload. The physiological data needed to compute these measures can be collected 

in real-time, in a non-invasive manner, with devices and electrodes that are easy to apply. It is, 

however, important to note that in order to derive useful metrics from physiological data, signal 

processing algorithms are needed. Unprocessed electrical data from the eyes, for instance, is not 

necessarily useful for monitoring workload. However, this data can be processed to extract 

features (e.g., blink rate and duration) that have demonstrated sensitivity to changes in workload.   

 

Cortical Measures. There are numerous neuroimaging techniques available for studying the 

complex and dynamic behavior of the brain. Electroencephalography (EEG) is employed in the 

current study because it offers high temporal resolution, ease of use, portability, and is of 
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relatively low cost compared to other neuroimaging techniques (Zander & Kothe, 2011). EEG is 

the recording of electrical activity along the scalp, which measures voltage fluctuations resulting 

from ionic current flows within the neurons of the brain (Niedermeyer & da Silva, 2004). 

Typical methods to examine EEG data include: power spectral density or the averaged power, 

maximum / log power spectra, sub-band entropy, and autoregressive modeling (Zarjam, Epps, & 

Lovell, 2012). Researchers have demonstrated that EEG can be used in real-time to assess mental 

workload (e.g., Wilson & Russell, 2007), and that such methods are sufficiently stable to provide 

accurate assessment over the course of several days and weeks (Christensen, Estepp, Wilson, & 

Russell, 2012). Research has shown that alpha activity is an idling rhythm of humans at rest, 

which becomes desynchronized during cognitive processes (e.g., higher workload; Pfurtscheller 

& Lopes da Silva, 1999). Thus alpha power should decrease in high workload conditions 

(Wilson, 2001). Conversely, theta and delta power have been found to increase under high 

workload conditions (Hankins & Wilson, 1998; Wilson, 2001). 

 

Cardiac Measures. Electrocardiography (ECG) can be used to obtain cardiac measures, such as 

heart rate (HR) and heart rate variability (HRV), in most task environments via the application of 

a few electrodes over the heart (Wilson, 1992). In both laboratory and field settings, researchers 

typically observe HR increases and HRV decreases in high workload situations (e.g., Jorna, 

1992; Mulder, 1992; Porges & Byrne, 1992; Roscoe, 1992). There is some debate about which 

measure is superior. Roscoe (1992) suggested that HRV may indicate changes in mental 

workload in the absence of any change in overall HR. Grossman (1992), however, indicated that 

it is not clear if HRV provides any more information than simple HR.  

 

Respiration Measures. An inexpensive, simple, and non-invasive method to collect respiration 

data involves the operator wearing an elastic band around the rib cage which measures expansion 

associated with breathing. Respiration has been clinically associated with the autonomic nervous 

system (ANS), and as such is affected by the body’s stress response (Suess, Alexander, Smith, 

Sweeney, & Marion, 1980).  As stress and workload increase, so do the metabolic demands 

within the body. Breathing rate is the most frequently utilized respiratory variable in 

psychophysiological research today, but it may not be the best indicator of stress. Cohen et al. 

(1975) suggested that one must break the respiratory waveform down into its various 

components and analyze them separately in order to visualize the precise effects of the stress 

response on respiratory physiology. Further, Veltman and Gaillard (1998) indicate that 

inspiratory flow should increase, while inspiration time, respiration amplitude, respiration cycle 

time, and respiration duty cycle time should decrease, during times of high mental workload.  

 

Voice Measures. Of all of the physiological measures described thus far, voice data is perhaps 

the easiest to obtain. Operators typically utilize headsets equipped with microphones, so 

collecting voice data is simply a matter of utilizing the microphone. The more challenging aspect 

of voice stress analysis is the extraction of the specific features that are associated with 
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workload. Certain vocal properties allow for the non-invasive diagnosis of psychophysiological 

state in real-time (Collier, 1974). Fundamental frequency measures include mean pitch, pitch 

variance, maximum pitch, and pitch range, which have all been shown to increase with larger 

levels of cognitive workload (Brenner, Doherty, & Shipp, 1994; Lippold, 1971). Additional 

voice stress measures include speaking rate (syllables per second), average syllable length, 

average pause length, and percent pause (i.e., the percentage of time spent pausing in an 

utterance). Speaking rate and percent pause have been shown to increase under higher cognitive 

loads, while average syllable and pause length decrease (Brenner et al., 1994). 

 

Ocular Measures. Data from the eyes can be obtained via both on body methods, such as 

electrooculography (EOG), and off body methods, such as camera-based eye-tracking systems. 

Several ocular measures have demonstrated sensitivity to workload. Blink rate and blink 

duration, for instance, typically decrease with an increase in cognitive load (Fogarty & Stern, 

1989). Furthermore, an increase in pupil diameter often occurs during an increase in mental 

demand (Beatty, 1982). It should be noted, however, that pupil dilation can also change due to 

the illumination condition of the visual field. In fact, background brightness can result in greater 

variation of pupil diameter than task difficulty (e.g., Pomplun & Sunkara, 2003).  

 

Summary. In the current research, raw physiological data were collected, algorithms were used to 

extract features, and the features were used as inputs to ANN models (see Durkee et al., 2013).  

The models were evaluated and validated using a realistic high-fidelity RPA task environment.  

More specifically, the primary goal of the current research was to determine if the model outputs 

correlate with a validated measure of subjective workload. 

 

Another objective of the current research was to identify new physiological features that show 

sensitivity to workload. Not all physiological features in the current research were used as model 

inputs, but all features were evaluated. The respiration and voice measures in this study, for 

instance, were not input into the models, but were nonetheless analyzed in relation to the 

workload manipulations. The following experiment was designed to meet these research 

objectives.  

 

3.0 METHODS 

 

3.1 Participants 

 

Twelve individuals recruited locally (Midwest region) were studied. Eight participants were male 

and four were female. Age ranged from 18-46, with a mean of 25.7.  They were screened for 

motor, perceptual, cognitive, heart, and neurological conditions, as well as hearing impairments. 

Participants did not take any neurological medications or medications that caused drowsiness. 

The participants stated they were comfortable operating a computer, reading small characters on 
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a computer monitor, hearing and comprehending verbal commands presented through 

headphones, and learning complex, computer based tasks. They were fluent in English and had 

normal or corrected-to-normal eyesight with no color blindness, and provided written informed 

consent in accordance with human research ethics guidelines prior to the start of the experiment. 

These participants were non-pilots, lacked operational experience, and were paid for their 

participation.  

 

In addition to the general sample, two pilots participated in the study. Data from the pilots were 

examined, though not included in the general analysis due to their operational experience. Both 

pilots were male. One was 38, and the other was 35 years old. One had 7 years of RPA flight 

experience, and the other had 3 years. The pilots volunteered to participate in the study and were 

not paid for their time. The same screening applied to the general sample also applied to the 

pilots.  

 

All study procedures were reviewed and approved by the Air Force Research Laboratory 

Institutional Review Board.  

 

3.2 Task 

 

Task overview. Each trial consisted of two separate primary tasks, both of which coincided with 

a secondary communications task (see Appendix A for screenshots of the tasks). Both primary 

tasks were implemented on a RPA simulator called “Vigilant Spirit.” This software was 

produced by the Air Force Research Laboratory (AFRL) System Control Interfaces Branch 

(RHCI). The secondary task was created using the Multi-Modal Communications (MMC) tool. 

This software was produced by the AFRL Battlespace Acoustics Branch (RHCB). Trials were 

presented to the participants as a simulated mission that started with a surveillance task and was 

followed by a tracking task. From a research perspective, this structure consists of two separate 2 

x 2 factorial experiments. There were 16 scenarios that each participant experienced once over 

the course of four days of data collection. Conditions were counterbalanced within task type 

(surveillance and tracking), although the tracking task always followed the surveillance task.  

 

Each trial would begin with one minute of setup time. The surveillance task followed this setup 

phase, taking place between 60 - 315 seconds into each trial. At 330 seconds, an audio message 

was presented over the headset indicating that it was time for participants to complete a 

subjective workload questionnaire (described later) for the surveillance task. At 490 seconds into 

the trial, another message played indicating that it was time for the participant to prepare for the 

tracking task. Participants were then guided through a target acquisition phase, followed by the 

tracking task which took place between 600 - 810 seconds.  A message in the headset then 

indicated that the trial was over and that it was time for the participant to complete a subjective 

workload assessment of the tracking task. 
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Surveillance task. The surveillance task required participants to search a market area to find high 

value targets (HVTs). The HVTs were men carrying M82 sniper rifles. There were four HVTs 

per trial and they appeared at one minute intervals. The HVTs entered the scenario by walking 

out from under a tent and walked around the market area for roughly 57 seconds. They exited the 

scenario by walking under a different tent, at which point a new HVT would enter the scene. The 

four HVTs never overlapped. 

 

The first experimental manipulation was the number of distractors (other entities) walking 

around the market area. There were three types of distractors: women wearing long dresses, men 

carrying pistols, and men carrying shovels. We expected that the male distractors would present 

a larger challenge than the female distractors because of their visual similarity to the HVTs 

(same entity model, but carrying something different). We also expected that the men carrying 

the shovels would be especially distracting because the shovel was visually similar to the sniper 

rifle, as was held in a position similar to the sniper rifle. The easy conditions contained 16 

distractors (8 women, 7 men with pistols, and 1 man with a shovel), and the hard conditions 

contained 48 distractors (24 women, 20 men with pistols, and 4 men with shovels). 

 

The second experimental manipulation was the presence or absence of fuzz (degraded sensor 

image). Under the easy condition the fuzz was not turned on, but under the hard condition the 

fuzz was on, making it more difficult to identify HVTs. The image degradation was designed to 

reflect equipment failure that can occur in the real world and was similar to the “snow” seen on 

television sets when the signal is not clear.  

 

Tracking task. For this task, participants were required to track HVTs traveling by motorcycle. 

Participants were instructed to keep the RPA sensor positioned over the HVTs, which they 

accomplished by clicking in the sensor feed with the mouse, causing the sensor feed to center on 

where they had clicked. A feature in the RPA simulator called sensor slaved tracking would then 

automatically update the aircraft position to fly a loiter circle around the center of the sensor 

feed, thereby eliminating the need for the participant to manually navigate the aircraft. 

 

The first experimental manipulation was the number of HVTs. In easy conditions participants 

tracked one HVT, and in hard conditions they tracked two. Tracking two HVTs was expected to 

be more difficult because it required participants to constantly shift their attention between two 

video feeds. 

 

The second experimental manipulation was the route the HVT(s) would travel. In easy 

conditions the HVTs would ride along a straight, open, country road. In hard conditions HVTs 

would travel through a city, taking many turns and frequently becoming obstructed by buildings.  
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Communication task. A secondary task was presented concurrently with both of the primary 

tasks. The task consisted of answering four cognitively challenging mental math questions. 

Questions were presented verbally over a headset and transcriptions were displayed. Participants 

were instructed to press and hold the spacebar while they responded verbally. The questions 

were operationally relevant. An example question is “How long would it take you to reach a 

destination 100 nautical miles away with a headwind of 15 knots?” Questions were evenly 

distributed throughout each trial. 

 

3.3 Apparatus and Measures 

 

Performance. Performance was assessed using a composite scoring algorithm, which was based 

on performance in both the primary and secondary tasks. The maximum possible score was 

1,000 points (800 for the primary task and 200 for the secondary task). This basic approach is 

used for both the surveillance and tracking tasks. 

 

To obtain points in the surveillance task, participants were required to locate, identify, and track 

the HVTs. Participants pressedthe F-key when they thought they had found the HVT. If correctly 

identified, points would begin accumulating for each second the HVT was tracked until he 

walked under a tent. Incorrectly identifying a distractor as the HVT (false positive) would result 

in a five point penalty. Participants were required to keep the HVT visible in the video feed 

while tracking to accrue points. Additionally, participants would receive the maximum number 

of points per second for keeping the video feed at one of the two highest zoom levels. Using 

lower zoom levels would result in half as many points being awarded. 

 

Performance in the tracking task was divided into two components. First, participants were 

required to keep the HVTs, traveling by motorcycle, in the video feed(s). Maximum points were 

accumulated when using the highest two levels of zoom, whereas points accrued at half that rate 

at lower levels of zoom. At most, 600 points per trial could be attained from keeping the HVT(s) 

in the video feed.  Second, participants were instructed to keep the HVT(s) centered in the video 

feeds. At most, 200 points per trial could be attained from keeping the HVT(s) centered.  

 

For the secondary task, there were four questions per trial, each worth a maximum of 50 points.  

In order to obtain all points, participants had to respond correctly within 20 seconds. After 20 

seconds, the participants would lose 5 points per second for the next 10 seconds.  After 30 

seconds, no points were given. Answering incorrectly resulted in a 5 point penalty. The four 

questions were evenly spaced within each task (surveillance & tracking). There were four groups 

of questions (speed addition, speed subtraction, distance, and altitude), with eight unique 

questions pergroup. Each trial consisted of a unique combination of one question from each 

group. Therefore, each question was presented twice over the course of data collection. Question 

difficulty was balanced across conditions. 
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Competition. During early in-house testing, one of the test subjects stated that they had simply 

given up in the hardest condition, and rated their subjective workload accordingly. This type of 

disengagement would have deleterious effects on the current study if a process was not 

implemented to discourage it. Therefore, a competition-based plan using performance scores was 

implemented. Prior research has shown that competition is an effective way to increase subject 

motivation in long-term experiments (Fiorita, Middendorf, & McMillan, 1992). Top scores based 

on session averages were posted on a whiteboard. Session averages were used to discourage 

participants from giving up on any one trial. The top scores were posted on the whiteboard using 

identification numbers to maintain anonymity.  

 

To provide participants a better chance to post high scores and thus remain engaged, the 

whiteboard was periodically erased throughout the study. The decision to erase the board was 

motivated by the performance of the first participant, who posted the highest scores in the study. 

Thus, the goal of erasing the board was to prevent other participants from withdrawing from the 

competition because they did not believe that they would be able to get on the board, thereby 

negating the incentive to do their best.      

 

Subjective workload. Subjective workload was collected using a modification of the NASA-Task 

Load Index (TLX), a multidimensional measure that assesses perceived workload (Hart & 

Staveland, 1988). Workload was determined by averaging across the six sub-scales (mental 

demand, physical demand, temporal demand, performance, effort, and frustration). Nygren 

(1991) found the average to be psychometrically equivalent to the weighted sub-scale averaging 

suggested by the TLX authors. Empirically, the weighted averages have not been found to be 

superior to the simple average of the sub-scales (Christ et al., 1993; Hendy, Hamilton, & Landry, 

1993). 

 

Physiological data acquisition and processing. The physiological data were collected using four 

hardware devices, including two Cleveland Medical Devices BioRadio 150s, a SmartEye Pro 5.9 

eye-tracking system, and a Zephyr Bioharness 3. Electrical signals (EEG, EOG, and ECG) were 

sampled using the two BioRadios. All signals connected to the BioRadio 150 were subjected to a 

first order analog band pass filter with an input bandwidth of 0.5 - 250 Hz. The sampled data 

were transmitted wirelessly to a computer for processing and recording. 

 

EEG data, sampled at 480 Hz, were acquired using electrodes placed directly on the scalp and 

secured in place with an Electro-Cap manufactured by Electro-Cap International, Inc. The EEG 

data were measured at seven sites on the scalp in accordance with the international 10 / 20 

system (Jasper, 1958). The seven sites were F7, F8, T3, T4, Fz, Pz, and O2. The right and left 

mastoids were used as the reference and ground for the EEG signals. All initial electrode 

impedances were measured to be at or below 5 kΩ. The frequency bands (i.e., pass bands) used 

in the EEG signal processing were delta (1-3 Hz), theta (4-7 Hz), alpha (8-12 Hz), beta (13-30 
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Hz), gamma 1 (31-40 Hz), gamma 2 (41-57 Hz) and gamma 3 (63-100 Hz). A four second time 

domain window was used to process the raw EEG data. The raw data in the four second window 

was filtered using a 4th order Butterworth band pass filter with break frequencies describe above. 

A Hanning window was applied to the filtered data and power spectral analysis was performed. 

The resulting power in the pass band was then averaged. These steps were repeated for each 

frequency band and electrode site. The four second time domain windows had a 75% overlap, 

thus yielding one measure of average power every second. This signal processing approach 

produced 49 EEG measures per second (7 sites with 7 bands per site).  Artifact mediation was 

accomplished using the artifact separation technique (see Credlebaugh, Middendorf, Hoepf, & 

Galster, 2015). 

 

Vertical EOG (VEOG) data were acquired using two electrodes placed above and below the left 

eye. Horizontal EOG (HEOG) data were acquired using two electrodes placed to the left and 

right of the eyes. All EOG data were sampled at 480 Hz, and the left mastoid was used as the 

ground. The initial electrode impedances for the EOG were measured to be at or below 20 kΩ. 

Blink rate and duration were extracted from the VEOG data using a blink detection algorithm 

(see Epling et al., 2015). Both the VEOG and HEOG were used to detect saccades (see 

Middendorf et al., 2015).  

 

ECG data, sampled at 960 Hz, were acquired using two electrodes placed on the sternum and 

xiphoid process. The left mastoid was used as the ground. The initial electrode impedances for 

the ECG were measured to be at or below 20 kΩ. Interbeat intervals (IBIs) were calculated from 

the ECG data. The IBIs were used to calculate heart rate and heart rate variability. 

 

Pupil diameter data were sampled at a frequency of 60 Hz using the SmartEye Pro 5.9 eye-

tracking system. The system was comprised of six cameras mounted with infrared light sources, 

a computer used for the processing of image data, and the SmartEye software. It is important to 

note that there was a data quality variable associated with pupil diameter data. The variable 

ranged between 0 and 1, with 1 indicating highly reliable data, and 0 indicating that the data 

cannot be used. For example, if the participant blinked or left the field of view, the quality 

variable would be zero. The specific information used to formulate this variable was not 

available as the algorithm is proprietary. However, a conversation with a representative from the 

SmartEye organization indicated that a value of .65 would be an acceptable cutoff value in the 

determination of the usability of the data. Thus, only pupil diameter data associated with a 

quality variable value of .65 or higher were included in analysis.  

 

The Zephyr Bioharness 3 was used to acquire respiration data. This device consists of two 

components, including an elastic strap and a data acquisition “puck.” The strap is worn around 

the torso at the sternum level and the puck, which snaps into the strap, contains a microprocessor 
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for data acquisition and wireless transmission to a computer via Bluetooth. Respiration is 

captured as a breathing waveform signal using a capacitive pressure sensor, sampled at 18 Hz. 

 

The breathing waveform signal is processed by an algorithm to produce six features as described 

by Veltman and Gaillard (1996). The six features are respiration rate, inspiration flow, 

inspiration time, expiration time, total cycle time, and duty cycle time, The algorithm is robust to 

occasional dropouts in the Bluetooth signal and artifacts caused by body movement. 

 

Workload models. Four artificial neural network models were created using NeuroSolutions 

software. The goal of the models was to produce a real-time measure / estimate of cognitive 

workload based on physiological features. The models outputs ranged from 0-100, with 0 being 

the lowest and 100 being the highest workload estimate. The models were initially trained using 

data from a previous investigation (see Durkee, Pappada, Ortiz, Feeney, & Galster, 2015). All 

models utilized 42 EEG inputs (including all of the 49 EEG measures listed above with the 

exception of all of the bands at the T4 site), pupil diameter, heart rate, and inter-beat interval. 

The T4 site could not be included as a model input because it was not included in the training 

dataset.  

 

Model 1 operated with static weights from a recent model training study (Durkee et al., 2015). 

The complete dataset consisted of 1,875 minutes of physiological data. The data were collected 

from 25 participants in a prior study as they completed 15 trials that lasted 5 minutes each. In 

addition, the model was trained via ANN methods in which the inputs were collectively trained 

to an estimate of ground truth. The ground truth estimate was derived from the continuous time 

series using the ratio of Fz theta / Pz alpha for signal injection. Gevins (1998) found that frontal 

theta power increases with task load while parietal alpha power decreases. Furthermore, this 

EEG ratio was anchored to participants’ NASA-TLX responses for each corresponding trial, 

meaning the average continuous truth estimate for each trial approximately matched the NASA-

TLX response.  

 

A brief description of the signal injection process using the ratio is provided here. Essentially, a 

validated metric (the TLX in this case) is collected and used as an anchor. Since the TLX is only 

collected at the end of the trial, another validated workload metric that can be used continuously 

is used to retrospectively inject noise (e.g., the Fz / Pz EEG ratio). The output of this signal 

injection step is a second-by-second estimate of “actual workload,” which if averaged over the 

course of a given trial, would roughly equal the TLX response for the trial. Noise is injected into 

the TLX under the assumption that workload does not remain perfectly constant throughout a 

task, and the TLX is merely an average workload estimate by a person over the task. Using the 

TLX alone would circumvent efforts to estimate specific workload fluctuations, including the 

peaks and valleys. The signal injection step attempts to objectively define these fluctuations. It 

does this by tracking an objective measure that has been empirically shown to have a relationship 
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with workload. Although this does not give a perfect estimate of workload, the hypothesis is that 

it should resemble actual workload better than assuming a flat-line TLX across the entire trial, 

and training the model to find the best fitting weights to match that. All four models used some 

sort of signal injection, although two of the models use Fz theta only for signal injection instead 

of the ratio. The other important distinction with respect to the models is whether static weights 

were used versus on-line training.   

 

Model 2 was identical to Model 1, but it trained on-line. On-line training in this experiment 

essentially means that the measurement system was actively and autonomously adapting / 

changing in an effort to better “learn” what it is trying to measure (i.e., reduce model error, 

improve classifier accuracy). More specifically, the model weights attempted to re-train each 

time a new TLX response was received while the data collection system was in a stopped state 

after a trial had ended. There were a number of reasons that the model weights would not re-

train. For instance, if model training was currently underway from a previous trial, this process 

would not be interrupted. Another reason model weights did not always update would be to 

retain existing model weights that provided an accurate classification relative to NASA-TLX 

responses. This was implemented through a system check comparing the mean difference 

between the NASA-TLX response and the output from the previous trial. Specifically, if the 

mean difference was less than five the model training process would be bypassed in favor of the 

existing weights.  

 

For all on-line model training attempts, the TLX input served as a trigger for the system to 

append the newly received data to the overall model training set and to initiate a new model 

training process. One important caveat is that updated participant weights from on-line training 

were not saved from session to session. Thus, the outputs of Model 1 and 2, for instance, would 

be identical for the first trial of each session, but would diverge for the remaining three trials for 

each session. It should be noted that the models that trained on-line were based on 84% smaller 

datasets than the static weight models. Although a reduced dataset can impact model accuracy, 

this was necessary to accommodate reasonable training times, in the range of four to six minutes 

on average. In addition, the smaller datasets were intended to increase the sensitivity of the new 

model weights to each subjects’ patterns in their respective physiological signals, thus, more 

rapidly creating model weights that are personalized to a specific subject. Although the 

additional data used in the on-line training process was relatively small compared to the initial 

training dataset, the goal was to obtain a glimpse of how on-line training may improve model 

accuracy.  

 

Models 3 and 4 were different from Models 1 and 2 in that they utilized Fz theta only for signal 

injection instead of the ratio. Prior research (e.g., Onton, Delorme, & Makeig, 2005) has shown 

an increase in frontal midline theta activity with increased working memory demands. It was 

important to investigate multiple types of model configuations in order to determine if one 
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method was superior. In addition, Model 3 utilized static weights whereas Model 4 trained on-

line. Examining these various model development strategies allowed for a direct comparison of 

model accuracy as a function of using different data features as well as the impact of 

individualized  models. 

 

3.4 Procedure 

 

Participants were brought into the laboratory for two days of training and four days of data 

collection. On the first training day, participants viewed a PowerPoint presentation containing a 

description of the task and measures, and then completed part-task training for the primary and 

secondary tasks. The first day of training concluded with four practice trials. The second day of 

training consisted of a minimum of four additional practice trials, with the possibility of running 

up to an additional two practice trials. There were two reasons why participants would 

sometimes complete additional practice trials. First, extra practice trials were provided if a 

participant requested extra practice. Second, the research team mandated additional practice 

trials if a participant struggled to consistently meet a minimum performance threshold. This 

minimum performance threshold was defined as the ability to consistently obtain points in both 

the primarily and secondary task, while demonstrating a thorough understanding of the 

composite scoring algorithm. On data collections days, participants were equipped with the 

physiological measurement devices and then completed four experimental trials per day, for a 

total of sixteen trials. A debriefing was conducted at the end of the last day.  

 

 4.0 RESULTS 

 

There were two primary areas of analysis from the experiment, the ANOVA and model results. 

First, descriptive and ANOVA results are presented, followed by the model results for the 

surveillance task. The same structure will follow for the tracking task. Formal statistical analyses 

were only conducted using data from the general sample, as the two pilots did not constitute a 

sample size sufficient for statistical analyses.  

 

4.1 Surveillance Descriptive and ANOVA Results 

 

The means from the surveillance task are presented in Table 1 (distractor manipulation) and 

Table 3 (fuzz manipulation). The two pilots showed similar physiological responses to the non-

pilots. The means for the performance and subjective workload measures for the pilots are 

presented in Table 2 for the distractor manipulation and Table 4 for the fuzz manipulation.  
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Table 1. Means for the distractor manipulation for the surveillance task. 

Variable          Low Distractors         High Distractors 

      Mean                 SE            Mean           SE 

Primary Score 449.833 17.826 310.082 23.860 

Number of HVTs Located 3.281 0.120 2.385 0.141 

Secondary Score 181.625 5.250 181.031 5.076 

Total Score 631.458 20.787 491.113 26.085 

Subjective Workload (TLX) 37.404 4.134 42.934 4.025 

Heart Rate (Beats / Minute) 72.370 3.386 72.068 3.680 

Heart Rate Variability (Hz) 0.028 0.124 0.028 0.117 

Inspiration Flow 2.245 0.145 2.284 0.153 

Inspiration Time (s) 0.221 0.026 0.225 0.029 

Respiration Amplitude 519.369 1.269 519.747 1.411 

Respiration Cycle Time (s) 3.116 0.104 3.137 0.107 

Respiration Duty Cycle Time (s) 0.413 0.006 0.412 0.004 

Mean Pitch (Hz) 144.852 14.436 145.092 14.090 

Pitch Variance (Hz) 99.285 0.402 112.830 0.392 

Maximum Pitch (Hz) 173.974 19.214 174.764 18.509 

Pitch Range (Hz) 41.112 0.206 42.976 0.195 

Speaking Rate (syllables / 

second) 

4.412 0.135 4.404 0.146 

Average Syllable Length (s) 0.156 0.007 0.156 0.006 

Average Pause Length (s) 0.133 0.005 0.131 0.005 

Percent Pause (%) 38.359 1.596 38.185 1.572 

Blinks Rate (Blinks / Minute) 9.270 0.201 8.808 0.197 

Blink Duration (s) 0.107 0.003 0.107 0.003 

Pupil Diameter (mm) 4.274 0.219 4.270 0.218 

 

Table 2. Means for the distractor manipulation for the surveillance task among the pilots. 
   

Variable  Low Distractors High Distractors 
   

Primary Score 368.121 288.916 

Number of HVTs Located 2.625 2.188 

Secondary Score 167.188 167.188 

Total Score 535.308 459.229 

Subjective Workload (TLX) 18.334 16.667 
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Table 3. Means for the fuzz manipulation for the surveillance task. 
Variable              No Fuzz           Fuzz 

      Mean              SE          Mean         SE 

Primary Score 387.077 23.028 372.839 17.269 

Number of HVTs Located 2.896 0.126 2.771 0.118 

Secondary Score 183.344 4.633 179.312 5.832 

Total Score 570.421 25.532 552.151 19.182 

Subjective Workload (TLX) 40.468 4.317 39.870 3.931 

Heart Rate (Beats / Minute) 71.931 3.574 72.507 3.514 

Heart Rate Variability (Hz) 0.028 0.107 0.028 0.135 

Inspiration Flow 2.340 0.145 2.189 0.157 

Inspiration Time (s) 0.217 0.029 0.229 0.027 

Respiration Amplitude 520.045 1.378 519.071 1.341 

Respiration Cycle Time (s) 3.094 0.111 3.159 0.106 

Respiration Duty Cycle Time (s) 0.414 0.005 0.411 0.006 

Mean Pitch (Hz) 145.542 14.540 144.402 13.990 

Pitch Variance (Hz) 101.351 0.408 110.531 0.386 

Maximum Pitch (Hz) 174.178 19.148 174.560 18.588 

Pitch Range (Hz) 41.009 0.209 43.083 0.191 

Speaking Rate (syllables / 

second) 

4.406 0.140 4.409 0.141 

Average Syllable Length (s) 0.156 0.006 0.156 0.007 

Average Pause Length (s) 0.129 0.005 0.135 0.006 

Percent Pause (%) 38.249 1.686 38.295 1.442 

Blinks Rate (Blinks / Minute) 9.017 0.201 9.055 0.205 

Blink Duration (s) 0.107 0.003 0.107 0.003 

Pupil Diameter (mm) 4.284 0.219 4.260 0.218 

 

Table 4. Means for the fuzz manipulation for the surveillance task among the pilots. 
   

Variable No Fuzz Fuzz 
   

Primary Score 316.639 340.398 

Number of HVTs Located 2.438 2.375 

Secondary Score 181.563 152.813 

Total Score 498.201 496.336 

Subjective Workload (TLX) 15.313 19.688 
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The performance, subjective workload, and physiological data were statistically evaluated using 

two-way repeated-measures ANOVAs for the surveillance task (see Table 5). Note that 

positively skewed dependent variables (e.g., blink rate) were log transformed prior to analyses. 

Figures for significant results can be found in Appendix B and EEG results are presented in 

Appendix D.  

 

Table 5. ANOVA results for the surveillance task. 
   

Variable Distractors Fuzz 
   

Primary Score F(1,11) = 37.62, p = 0.0001* F(1,11) = 0.50, p = 0.4924 

Number of HVTs Located F(1,11) = 43.00, p = 0.0001* F(1,11) = 1.69, p = 0.2199 

Secondary Score F(1,11) = 0.03, p = 0.8662 F(1,11) = 1.01, p = 0.3823 

Total Score F(1,11) = 33.47, p = 0.0001* F(1,11) = 0.83, p = 0.4049 

Subjective Workload (TLX) F(1,11) = 35.03, p = 0.0001* F(1,11) = 0.14, p = 0.7108 

Heart Rate (Beats / Minute) F(1,11) = 0.30, p = 0.5932 F(1,11) = 0.63, p = 0.4447 

Heart Rate Variability (Hz) F(1,11) = 0.92, p = 0.3573 F(1,11) = 0.11, p = 0.7461 

Inspiration Flow F(1,11) = 1.78, p = 0.2185 F(1,11) = 6.01, p = 0.0399* 

Inspiration Time (s) F(1,11) = 0.56, p = 0.4746 F(1,11) = 1.00, p = 0.3456 

Respiration Amplitude F(1,11) = 3.57, p = 0.0954 F(1,11) = 4.12, p = 0.0770 

Respiration Cycle Time (s) F(1,11) = 1.06, p = 0.3329 F(1,11) = 1.72, p = 0.2262 

Respiration Duty Cycle Time (s) F(1,11) = 0.12, p = 0.7410 F(1,11) = 0.42, p = 0.5343 

Mean Pitch (Hz) F(1,11) = 0.09, p = 0.7666 F(1,11) = 1.30, p = 0.2781 

Pitch Variance (Hz) F(1,11) = 4.24, p = 0.0640 F(1,11) = 1.72, p = 0.2160 

Maximum Pitch (Hz) F(1,11) = 0.65, p = 0.4386 F(1,11) = 0.08, p = 0.7804 

Pitch Range (Hz) F(1,11) = 1.62, p = 0.2293 F(1,11) = 1.80, p = 0.2063 

Speaking Rate (syllables / 

second) 

F(1,11) = 0.02, p = 0.8801 F(1,11) = 0.00, p = 0.9581 

Average Syllable Length (s) F(1,11) = 0.01, p = 0.9127 F(1,11) = 0.06, p = 0.8063 

Average Pause Length (s) F(1,11) = 0.99, p = 0.3409 F(1,11) = 2.94, p = 0.1145 

Percent Pause (%) F(1,11) = 0.06, p = 0.8093 F(1,11) = 0.01, p = 0.9333 

Blinks Rate (Blinks / Minute) F(1,11) = 1.80, p = 0.2067 F(1,11) = 0.00, p = 0.9636 

Blink Duration (s) F(1,11) = 0.45, p = 0.5160 F(1,11) = 0.00, p = 0.9674 

Pupil Diameter (mm) F(1,11) = 0.06, p = 0.8040 F(1,11) = 0.41, p = 0.5366 

Note: * = p < .05; There were no significant interactions in the surveillance task. 

 

Cortical measures. The EEG measures (power at each site and frequency band) were analyzed 

for each manipulation, but for conciseness only the significant (p < .05) results are reported and 

the means, standard errors, and F values are not included. Additionally, due to the fact there is 

little, or no, literature (Borghini, Astolfi, Vecchiato, Mattia, & Babiloni, 2014) reporting 

usefulness of the upper frequency bands (beta and gamma), these bands are not reported here. 
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For the fuzz manipulation, there was more power in the theta band at the F8 site in fuzz 

conditions than clear conditions. This effect was no longer present when blink and saccade 

artifacts were removed. A similar finding occurred for power in the delta band at site O2 (see 

Appendix D). 

 

The findings for the number of distractors manipulation were much more interesting. Six of the 

seven sites in the delta band had significantly less power for a high number of distractors than 

low distractors. However, all six sites lost significance when blink artifacts were removed (see 

Appendix D). This is not surprising given that participants tend to blink less in high workload 

conditions than low conditions (Fogarty & Stern, 1989), and it is known that blinks easily 

contaminate the delta band (Picton et al., 2000). Although blink rate was not significant in this 

study (p = 0.2067), there were substantially less blinks in the high distractors conditions than the 

low distractors condition (4597 vs. 4859). 

 

For the theta band there was significantly more power at sites T3 and Pz for high distractors than 

low. These results are in the expected direction. For the alpha band there was significantly more 

power at all seven sites for high distractors than low. This effect is not in the expected direction. 

It was suspected that the effect was caused by ocular artifacts, since these artifacts easily 

contaminate alpha power (Picton et al., 2000). When blink artifacts were removed, O2 lost 

significance. However, when blink and saccade artifacts were removed, three additional sites 

(mostly posterior) lost significance. The likely explanation for this is the change in the scanning 

pattern used for high and low distractors. For high distractors, the participants need to examine 

more entities to find the HVT, and the distance between the entities is smaller. This coupled with 

the fact that the saccade detection algorithm is threshold-based explains the effect. Specifically, 

the saccade detection algorithm is good at finding big saccades and less effective for small ones. 

Therefore, many of the smaller saccades associated with the high distractor condition do not get 

detected and the associated EEG measures do not get removed. The fact that only the anterior 

sites remain significant is not surprising given that as ocular artifacts travel across the scalp from 

anterior to posterior sites, the amplitude of the artifact decreases (Picton et al., 2000). 

 

4.2 Surveillance Model Results 

 

In order to evaluate the workload models, the relationships between the model outputs (averaged 

over the course of each trial) and Average TLX were investigated. Pearson partial correlations 

controlling for participant were calculated to determine if there was a relationship between 

Average TLX and model output. No correlations were significant (see Table 6), indicating that 

none of the models exhibited a relationship with subjective workload in the surveillance task.  
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Table 6. Pearson partial correlations between average trial output from ANN models and 

average subjective workload (TLX) in the surveillance task. 
  

Model R-value 
  

1 -.03 

2 .05 

3 -.10 

4 .22 

Note. * = p < .05; ** = p < .01; *** = p < .001. 

 

4.4 Tracking Descriptive and ANOVA Results 

 

The means from the tracking task are presented in Table 7 (target manipulation) and Table 9 

(route manipulation). Means from the pilots for the performance measures and subjective 

workload are also presented (see Table 8 for the target manipulation and Table 10 for the route 

manipulation). 

 



   

 

19 

DISTRIBUTION STATEMENT A:  Approved for public release.                           Cleared, 88PA, Case #2016-5522. 

Table 7. Means for the target manipulation for the tracking task. 

Variable               One Target              Two Targets 

    Mean               SE           Mean         SE 

Center Score 149.022  1.037 128.941  3.295 

Score Foot Print 594.392  2.722 553.862  14.373 

Secondary Score 186.018  4.318 180.399  7.212 

Total Score 930.050  5.811 863.656  19.907 

Subjective Workload (TLX) 35.868  4.039 46.947  4.476 

Heart Rate (Beats / Minute) 73.683  3.676 75.480  3.966 

Heart Rate Variability (Hz) 0.027  0.121 0.026  0.125 

Inspiration Flow 2.261  0.143 2.285  0.167 

Inspiration Time (s) 0.236  0.024 0.219  0.026 

Respiration Amplitude 519.696  1.209 519.634  1.389 

Respiration Cycle Time (s) 3.170 0.103 3.065 0.100 

Respiration Duty Cycle Time (s) 0.413  0.005 0.417  0.004 

Mean Pitch (Hz) 144.532  14.094 145.543  14.137 

Pitch Variance (Hz) 104.338  0.383 103.337  0.400 

Maximum Pitch (Hz) 172.951  18.414 174.701  18.324 

Pitch Range (Hz) 41.703  0.195 41.754  0.205 

Speaking Rate (syllables / 

second) 

4.301  0.119 4.341  0.151 

Average Syllable Length (s) 0.158  0.006 0.160  0.007 

Average Pause Length (s) 0.137  0.005 0.136  0.005 

Percent Pause (%) 38.053  1.516 35.874 1.349 

Blink Rate (Blinks / Minute) 8.589  0.250 6.663  0.246 

Blink Duration (s) 0.110  0.004 0.101  0.003 

Pupil Diameter (mm) 4.033  0.208 4.308  0.237 

 

Table 8. Means for the target manipulation for the tracking task among the pilots. 
   

Variable One Target Two Target 
   

Center Score 144.872 133.197 

Score Foot Print 598.031 553.277 

Secondary Score 186.250 168.229 

Total Score 929.153 854.703 

Subjective Workload (TLX) 17.969 40.937 
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Table 9. Means for the route manipulation for the tracking task. 
Variable            Country            City 

     Mean               SE           Mean         SE 

Center Score 141.810  1.399 136.152  2.398 

Score Foot Print 590.922  5.229 557.333  12.418 

Secondary Score 187.719  4.897 178.698  6.575 

Total Score 920.913  10.616 872.793  15.892 

Subjective Workload (TLX) 38.510  4.085 44.306  4.304 

Heart Rate (Beats / Minute) 74.766  3.689 74.397  3.952 

Heart Rate Variability (Hz) 0.026  0.122 0.026  0.124 

Inspiration Flow 2.284  0.152 2.262  0.160 

Inspiration Time (s) 0.230 0.023 0.225  0.026 

Respiration Amplitude 519.805  1.264 519.524  1.352 

Respiration Cycle Time (s) 3.124  0.095 3.110  0.103 

Respiration Duty Cycle Time (s) 0.416  0.004 0.415  0.005 

Mean Pitch (Hz) 144.483  14.293 145.592  13.944 

Pitch Variance (Hz) 103.687  0.401 103.986  0.381 

Maximum Pitch (Hz) 173.805  18.642 173.847  18.101 

Pitch Range (Hz) 41.915  0.203 41.542  0.195 

Speaking Rate (syllables / 

second) 

4.318  0.146 4.324  0.126 

Average Syllable Length (s) 0.160 0.007 0.158  0.006 

Average Pause Length (s) 0.135  0.005 0.138  0.006 

Percent Pause (%) 37.050  1.378 36.877  1.484 

Blink Rate (Blinks / Minute) 7.859  0.264 7.282  0.225 

Blink Duration (s) 0.109  0.004 0.102  0.003 

Pupil Diameter (mm) 4.155  0.223 4.186  0.220 

 

Table 10. Means for the route manipulation for the tracking task among the pilots. 
   

Variable Country City 
   

Center Score 141.718 136.352 

Score Foot Print 598.559 552.748 

Secondary Score 186.563 167.917 

Total Score 926.839 857.016 

Subjective Workload (TLX) 21.719 37.187 
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The performance, subjective workload, and physiological data were statistically evaluated using 

two-way repeated-measures ANOVAs for the tracking task (see Table 11). Note that positively 

skewed dependent variables (e.g., blink rate) were log transformed prior to analyses. Figures for 

significant results can be found in Appendix C (tracking), and EEG results are presented in 

Appendix D. 

 

Table 11. ANOVA results for the tracking task. 
   

Variable Targets Route 
   

Center Score F(1,11) = 40.24, p = 0.0001* F(1,11) = 20.34, p = 0.0009* 

Score Foot Print F(1,11) = 8.79, p = 0.0128* F(1,11) = 9.25, p = 0.0112* 

Secondary Score F(1,11) = 1.30, p = 0.2784 F(1,11) = 4.68, p = 0.0534 

Total Score F(1,11) = 15.45, p = 0.0024* F(1,11) = 14.86, p = 0.0027* 

Subjective Workload (TLX) F(1,11) = 39.74, p = 0.0001* F(1,11) = 40.82, p = 0.0001* 

Heart Rate (Beats / Minute) F(1,11) = 9.99, p = 0.0091* F(1,11) = 0.46, p = 0.5106 

Heart Rate Variability (Hz) F(1,11) = 1.33, p = 0.2739 F(1,11) = 0.72, p = 0.4137 

Inspiration Flow F(1,11) = 0.68, p = 0.4320 F(1,11) = 0.28, p = 0.6103 

Inspiration Time (s) F(1,11) = 3.81, p = 0.0867 F(1,11) = 0.48, p = 0.5085 

Respiration Amplitude F(1,11) = 0.07, p = 0.8040 F(1,11) = 0.62, p = 0.4551 

Respiration Cycle Time (s) F(1,11) = 4.33, p = 0.0711 F(1,11) = 0.34, p = 0.5782 

Respiration Duty Cycle Time (s) F(1,11) = 1.60, p = 0.2420 F(1,11) = 0.60, p = 0.4592 

Mean Pitch (Hz) F(1,11) = 2.98, p = 0.1122 F(1,11) = 1.51, p = 0.2450 

Pitch Variance (Hz) F(1,11) = 0.04, p = 0.8515 F(1,11) = 0.01, p = 0.9386 

Maximum Pitch (Hz) F(1,11) = 3.98, p = 0.0713 F(1,11) = 0.00, p = 0.9729 

Pitch Range (Hz) F(1,11) = 0.00, p = 0.9711 F(1,11) = 0.29, p = 0.6012 

Speaking Rate (syllables / 

second) 

F(1,11) = 0.50, p = 0.4951 F(1,11) = 0.01, p = 0.9177 

Average Syllable Length (s) F(1,11) = 0.64, p = 0.4396 F(1,11) = 0.26, p = 0.6180 

Average Pause Length (s) F(1,11) = 0.18, p = 0.6776 F(1,11) = 1.54, p = 0.2406 

Percent Pause (%) F(1,11) = 16.32, p = 0.0019* F(1,11) = 0.12, p = 0.7395 

Blink Rate (Blinks / Minute) F(1,11) = 3.52, p = 0.0873 F(1,11) = 0.46, p = 0.5104 

Blink Duration (s) F(1,11) = 49.57, p = 0.0001* F(1,11) = 17.07, p = 0.0017* 

Pupil Diameter (mm) F(1,11) = 26.71, p = 0.0003* F(1,11) = 2.09, p = 0.1765 

Note: * = p < .05; Significant interactions are described in the text.  
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Performance interactions. A significant interaction was present between the route type and 

number of HVTs for the center score F(1, 11) = 6.02, p < .05, footprint score F(1, 11) = 11.46, p 

< .01, and total performance score F(1, 11) = 7.59, p < .05.  The average center score containing 

country routes declined from 149.69 in conditions with one HVT to 133.93 in conditions with 

two HVTs, a difference of 15.76.  In contrast, the average center score containing city routes 

declined from 148.35 in conditions with one HVT to 123.95 in conditions with two HVTs, a 

difference of 24.40.  This differential decline in performance scores was also present in the 

footprint score.  The average footprint score in country routes declined from 597.08 with one 

HVT to 584.77 with two, a difference of 12.31, while that of city routes declined from 591.71 

with one HVT to 522.96 with two, a difference of 68.75.  Not surprisingly, the interaction found 

in the total performance score mirrors the effect seen in the individual scoring components 

above.  The average total score in conditions containing country routes declined from 940.07 

with one HVT to 901.76 with two, a difference of 38.31.  The average total score in city 

conditions declined from 920.03 with one HVT to 825.55 with two, a difference of 94.48.   

 

The explanation for these interactions is straightforward. Adding a second HVT in the city 

increased workload to a greater degree than a second HVT in the country. That is, two target 

country conditions consisted of two targets in the country, whereas two target city conditions 

consisted of two targets in the city. Thus, because city targets were more difficult to track than 

country targets, the effect of doubling the number of targets to track resulted in a differential 

increase in workload depending on if that target was in the country or city.  

 

Subjective workload interaction. Although not significant, the interaction between route and the 

number of HVTs trended in the expected direction, F(1,11) = 4.04, p = .07. The average 

workload in country routes increased from 33.66 in one HVT conditions to 43.36 in two HVT 

conditions, a difference of 9.69.  The workload in city routes increased from 38.07 in conditions 

with one HVT to 50.54 in those with two, a difference of 12.47. The interpretation of this 

interaction is also straightforward, as it occurred for the same reason as the performance 

interactions. That is, a second HVT in the city increased workload to a greater degree than a 

second HVT in the country.  

 

Cardiac interaction. There was a significant route by targets interaction for HR, F(1,11) = 5.61, 

p = .037.  HR in the country conditions increased from 74.4 bpm with one target to 75.1 bpm 

with two targets, a difference of 0.7 bpm. HR in city conditions increased from 73.0 bpm with 

one target to 75.8 bpm with two, a difference of 2.9 bpm. This is an interesting interaction, as the 

data suggests that heart rate was sufficiently sensitive to reflect the particularly high workload 

conditions of tracking two targets in the city.  

 

Ocular interaction. A significant interaction was also found between the route type and number 

of HVTs for pupil diameter, F(1,11) = 7.80, p < .05.  In country conditions, dilation increased 
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from one HVT (4.037) to two (4.273) by 0.236 mm.  In contrast, in city conditions, dilation 

increased from one HVT (4.029) to two (4.342) by 0.313 mm.  Thus, the data suggests that pupil 

dilatation rate was sufficiently sensitive to reflect the particularly high workload conditions of 

tracking two targets in the city. 

 

Cortical measures. The EEG measures (power at each site and frequency band) were analyzed 

for each manipulation, but due to the nature of the tracking task, results will not be reported.  

When tracking two targets, participants had to regularly shift their gaze from one video feed to 

the other. This caused large saccades to occur at a high rate. Based on examination of time 

history data, saccades were occurring approximately every 0.9 seconds. So, using four second 

windows, as was done with the surveillance task, was not possible. 

 

4.3 Tracking Model Results 

 

In order to evaluate the workload models, the relationships between the model outputs (averaged 

over the course of each trial) and Average TLX are examined (see Table 12). Model 1, Model 2, 

and Model 4 demonstrated a relationship with subjective workload.  

 

Table 12. Pearson partial correlations between average trial output from ANN models and 

average subjective workload (TLX) in the tracking task. 
  

Model R-value 
  

1 .76*** 

2 .61*** 

3 .09 

4 .36* 

Note. * = p < .05; ** = p < .01; *** = p < .001. 

 

5.0 DISCUSSION 

 

Researchers and engineers are continually striving to find a solution to meet increasing demand 

for RPA operations. Future control stations, for instance, are envisioned in which single 

operators can control multiple aircraft (Dixon et al., 2004). Such systems would allow an 

efficient use of human resources during low workload operations. A concern, however, is that 

workload could become excessive due to increased mental demand from managing multiple 

aircraft, potentially leading to performance decrements and mission failure. One solution to 

address excessive workload from controlling multiple vehicles, as well as existing challenges 

RPA operators experience, is to monitor operator state in real-time so that mental overload can 

be identified and mitigated in a timely fashion. That is, accurate workload assessment would 

allow the implementation of augmentation strategies before performance decrements occur. By 

examining the feasibly of using physiological measures to monitor workload, and examining the 
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effectives of several ANN models, this project advances the literature toward real-time workload 

assessment in field operations.  

 

5.1 Model Performance 

 

There was a stark difference in model results between the surveillance and tracking task. None of 

the models correlated significantly with subjective workload measures for the surveillance task. 

These results, however, are not especially surprising in light of the physiological results from the 

surveillance task, most of which did not reach levels of statistical significance.  

 

Model performance was more promising in the tracking task. Model 1 demonstrated the 

strongest relationship with subjective workload, followed by Model 2. In a sense, it was 

surprising that Model 2 performance was inferior to Model 1, given that the only difference 

between the two was that Model 2 trained on-line. The current instantiations of these on-line 

training models, however, have room for improvement in that the weights were not saved from 

session to session. The benefits of online training could take much longer than a few trials to be 

fully realized. Thus, on-line training should not be viewed in a negative light based on these 

results, though clearly further research is needed and planned. Models 3 and 4 (which utilize Fz 

theta only for signal injection instead of the Fz / Pz EEG ratio used in Models 1 and 2) 

performed poorly by comparison. Model 3 did not significantly correlate with subjective 

workload, and Model 4 (which trained on-line) did, but to a lesser extent than Models 1 and 2. It 

is interesting that on-line training improved performance for model 4 but not model 2. 

 

It is not surprising that the models performed better in the tracking task than the surveillance task 

for several reasons. First, the models were trained using data from a task that was more similar to 

the target tracking task (see Durkee et al., 2013). Thus, the models would be more likely to 

detect physiological reflections of workload unique to tracking tasks. In addition, results from 

the current experiment suggest that several physiological measures, which were included in the 

model training dataset, were sensitive to the workload manipulations in the tracking task, but not 

the surveillance task (i.e., pupil diameter and heart rate). Consequently, it would be expected that 

these vectors would improve model performance in the tracking task, but not necessarily the 

surveillance task.  

 

Overall, none of the models performed well enough to be implemented into field operations.  

Models used to drive adaptive automation need to consistently predict operator workload with a 

high level of resolution. The goal in the current study was to have a model that correlated with 

subjective workload with an r-value of .85 or greater. Model 1, the best performing model in the 

current research, demonstrated promising results in the tracking task. The current performance of 

even this model, however, is still too low for applied use.  
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The finding that Model 2 performed worse than Model 1 indicates that there is significant room 

for improvement in the on-line training process. Models 3 and 4 will need to be further evaluated 

as well. The inferior performance of these models may indicate that using Fz alone for signal 

injection is inferior to using the Fz / Pz EEG ratio.  

 

Thus, further model improvements are needed and planned before one of the ANN models can 

be transitioned into an operational setting. Currently, another model development study is 

underway with the goal of improving model performance. Several new model configurations and 

inputs will be investigated. In addition, weights from on-line training will be saved for each 

participant throughout the study. This will increase the volume of participant-specific data 

available for model training, which should improve model performance. In addition, the models 

will be task-specific in future research efforts (there will be separate models for the surveillance 

and tracking tasks). 

 

5.2 Surveillance Task Discussion 

 

In regards to the experimental manipulations for the surveillance task, results indicated that the 

fuzz manipulation did not significantly impact performance or subjective workload. It was 

anticipated that the presence of fuzz would make it more difficult for participants to distinguish 

HVTs from distractors. It could be the case that the fuzz did not sufficiently obscure the visual 

cues necessary to identify the sniper rifle carried by the HVTs. The distractor manipulation 

significantly impacted workload and performance. 

 

Physiological measures generally did not demonstrate sensitivity to workload in the surveillance 

task. Inspiration flow was significantly lower in fuzz conditions than clear conditions, which was 

in the opposite direction expected based on prior research (Veltman & Gaillard, 1998). There 

were problems associated with the consistent application of the respiration device.   

 

Pitch variance was greater in high distractor conditions, as would be expected based on prior 

research (Brenner et al., 1994; Lippold, 1971), but this difference did not reach conventional 

levels of statistical significance. Overall, the lack of significant physiological findings in the 

surveillance task was surprising. The evidence from this study is insufficient to advocate the use 

of inspiration flow or pitch variance in monitoring workload.  

 

5.3 Tracking Task Discussion 

 

For the tracking task, both the route and number of HVTs manipulations significantly impacted 

workload, performance, and several physiological measures. In regard to the route manipulation, 

blink duration was significantly reduced in city conditions. Blink duration appears to be a 

durable measure of workload, as it was identified as an indicator of workload in prior research 
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using the same tracking task environment (Hoepf et al., 2015), as well as other domains (e.g., 

Fogarty & Stern, 1989). 

 

In regard to the HVT manipulation, heart rate, pupil diameter, blink duration, and percent pause 

were sensitive to changes in workload. Further, blink rate, inspiration time, respiration cycle 

time, and maximum pitch also trended in the direction expected, although the differences did not 

reach statistical significance.  It was a bit surprising that heart rate, but not heart rate variability, 

was sensitive to changes in workload in this experiment, whereas the opposite was true in a prior 

experiment using the same tracking task environment (Hoepf et al., 2015). Blink rate, blink 

duration, and pupil diameter were, however, significant or at least trending in the expected 

direction in this experiment and the previous experiment, thereby further increasing confidence 

that these are durable physiological measures for monitoring workload. Changes in percent pause 

were significant, but the means were in the opposite direction expected. More research is needed 

to explain these findings.   

 

5.4 Competition Evaluation 

 

An important question in the current research was the extent to which participants remained 

engaged in the task. To assess participant engagement, a debriefing session with each participant 

was conducted at the end of the final day of data collection. Every participant indicated that the 

competition was a motivating factor for them, and that they did not give up on any trials. Thus, it 

was concluded that the competition was successful and the participants were engaged in the task.  

In future studies, engagement will be rated on a visual analog scale for each trial in order to 

quantifiably verify level of engagement. 

 

5.5 Pilots vs. Non-Pilots 

 

An important research question is how non-pilot participants (mostly college students) compare 

to pilots. After completing data collection from 12 non-pilot participants, data were collected 

from two pilots. The two pilots did not constitute a sufficient sample size for statistical 

evaluation. Subjective workload, however, was lower for the pilots than the non-pilots, except in 

the hardest tracking condition (two targets in the city; see Appendix C). Further investigation on 

this topic is warranted, as there may be implications if pilots systematically report lower 

workload than non-pilots.  It should be noted that it is possible that the pilots genuinely rated 

workload lower in the laboratory experiment due to their experience in operational settings. 
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5.6 Limitations 

 

A limitation in the tracking task is that interpretation of the EEG measures is difficult due to eye 

artifacts. Alpha power, for instance, increased at several sites in two HVT conditions, which 

were shown to be the more difficult conditions as evidenced by the performance and subjective 

workload data. One possible explanation is that EOG artifacts (Fatourechi, Bashashati, Ward, & 

Birch, 2007) were present in the EEG data due to the additional saccades associated with two 

target tracking conditions. Due to task demands, participants constantly shifted their gaze 

between two video feeds in the two target conditions. A very similar finding was present in a 

previous experiment using the same tracking task environment (Hoepf et al., 2015). 

 

In a sense, it is encouraging the EEG results are consistent between two studies that used the 

same task. In fact, it is likely that the neural network architecture of the workload models 

capitalized on these eye artifacts within the EEG data to identify saccadic eye movement patterns 

consistent with increased tracking activity. This of course is concerning for two reasons. First, if 

the workload models are in fact using eye artifacts in EEG, this would likely dilute the 

performance of the models in other task environments. Indeed, this may have been partially 

responsible for the poor model performance in the surveillance task.  

 

Attempts were made to compute artifact-free data by reducing the window size. A small window 

size (0.53 seconds) was tested in attempt to analyze “clean” segments of data between saccades 

(see Appendix D). However, the associated spectral resolution of the EEG data is very low, and 

thus unreliable. The usefulness of EEG data collected and new methods for removing frequent 

ocular artifacts is being considered. 

 

Another limitation of the current study is the small pilot sample size. It would have been 

preferable to collect data from twelve or more pilots in order to statistically compare the two 

samples. This would add confidence to conclusions regarding potential differences between 

pilots and non-pilots. In general, however, the addition of the pilots strengthened the study by 

providing a glimpse as to how pilots may compare to non-pilots. In addition, debriefing 

discussions with the pilots also revealed that the task environment used in this study was 

realistic, which was also important. 

 

5.7 Implications and Future Research 

 

The physiological measures used in the current investigation generally showed more sensitivity 

to changes in workload in the tracking task than the surveillance task. This finding indicates that 

physiological measures that are well suited for one task environment are not necessarily suited 

for other task environments. Thus, researchers should not assume that the physiological measures 

that demonstrated sensitivity to workload in the tracking task of this investigation will reflect 
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workload in other task environments. Before physiological measures can be utilized in field 

operations, researchers will need to conduct studies evaluating the effectiveness of the specific 

physiological measures to be used in those field operations using artificial task environments that 

accurately reflect the nature of the task.  

 

Researchers (e.g., Wilson, 1992) have suggested that the stress of real-world operations could 

result in increased physiological responses compared to laboratory experiments. Heart rate, for 

instance, did not reflect changes due to the workload manipulations in the surveillance task of the 

current research. However, heart rate could demonstrate sensitivity to workload in RPA 

surveillance field operations. The findings of the current investigation, though based on a 

realistic task environment, should not be expected to map perfectly onto field operations because 

the lab setting may not reflect the stress of field operations. Laboratory research with improved 

modeling capabilities need to be conducted before transitioning to the field. 

 

An important goal of this line of research is to make real-time assessments of operator workload 

for the purpose of augmenting performance. In the future, researchers should explore 

physiologically-based adaptive automation, which is a method of providing assistance to 

operators by introducing automation only when it is required (Parasuraman, Mouloua, & Molloy, 

1996; Scerbo, 1996). Wilson and Russell (2007), for example, used physiological features to 

train an artificial neural network to classify workload, which in turn was used to determine when 

the operator needed assistance. The researchers demonstrated a performance improvement of 

approximately 50% by using the adaptive automation technique. Future research will focus on 

improving the effectiveness of workload assessment models in RPA task environments using 

physiological measures. New physiological features will be added to the array of model inputs 

and improvements to the existing physiological features will be made. An enhanced modeling 

approach using advanced software will be implemented.  Lastly, model training will be improved  

to produce models that are individualized to the person and the task.   

 

6.0 CONCLUSIONS 

 

With the increasing use of RPA in military operations, research is needed to address the 

performance of our Airman in these operational domains. The current study implemented an 

operationally realistic RPA surveillance and tracking task, which was used to investigate 

performance, subjective workload, and physiological data. Utilizing the SAA taxonomy as a 

framework of research, the current study focuses on sensing the operator’s cognitive state using 

physiological measures, and then attempts to assess that state using ANN models.  

 

Several physiological features were identified that show potential for monitoring workload in 

RPA operations in real-time. Overall, these results are encouraging in that the physiological 
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measures clearly demonstrated sensitivety to workload in the tracking task. Thus, the current 

investigation takes a step toward physiologically-based workload assessment in RPA operations.   

 

The primary goal of this research was to evaluate four ANN models. Several of the ANN models 

significantly correlated with subjective workload in the tracking task, but not the surveillance 

task. Unfortunately, the correlations were not strong enough to drive adaptive automation. 

Further model development is needed before focusing on the augment phase of the SAA 

taxonomy.  Furthermore, improvements to modeling techniques and testing are required before 

field implementation will be possible. Such model improvements are underway.  
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APPENDIX A – SCREENSHOTS 

Surveillance (Low Distractors, No Fuzz) 

 
 

 

Surveillance (High Distractors, No Fuzz) 
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Surveillance (Low Distractors, Fuzz) 

 
 

 

Surveillance (High Distractors, Fuzz) 
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Tracking (One Target, Country) 

  
 

Tracking (One Target, City) 
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Tracking (Two Targets, Country) 

 
 

 

Tracking (Two Targets, City) 
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Overall Display (Includes Vigilant Spirit on left and middle monitors and MMC on the 

right monitor) 

 
 

Tactical Situation Display 
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Sensors 

 
 

Multi-Modal Communication Tool 
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APPENDIX B – SIGNIFICANT RESULTS (SURVEILLANCE) 
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APPENDIX C – SIGNIFICANT RESULTS (TRACKING) 
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TLX Average Scatter Plot-Tracking.  Average TLX scores are identified above for the tracking 

task.  Each letter represents a participant.  Letters “r” and “s” are the two pilots that participated 

in the study.  Note that they rated subjective workload lower than most participants, except for in 

the hardest condition (2 targets, city). 
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APPENDIX D – EEG REFERENCE 

 

EEG RESULTS - SURVEILLANCE  

      Fuzz: On - Off     Distractors: High - Low 

   
 

Main effect tests for Surveillance. The sign is the direction of the difference in log power (i.e., a 

plus sign means more power for on than for off and more power for high than for low). The size 

of the sign is relative absolute value of the t statistic (i.e., larger sign means smaller p-value). If 

the sign is circled then p ≤ 0.05.  
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EEG RESULTS - TRACKING  

Route: City - Country            Targets: 2 - 1  

   

 

Main effect tests for Tracking. The sign is the direction of the difference in log power (i.e., a plus 

sign means more power for city than for country and more power for 2 targets than for 1). The 

size of the sign is relative absolute value of the t statistic (i.e., larger sign means smaller p-value). 

If the sign is circled then p ≤ 0.05.  
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LIST OF ABBREVIATIONS AND ACRONYMS 

 

ANN   artificial neural network 

ANOVA  analysis of variance 

ANS   autonomic nervous system 

dB   decibel 

ECG   electrocardiography  

EEG   electroencephalography 

EOG   electrooculography 

HEOG   horizontal electrooculography 

HR   heart rate 

HRV   heart rate variability 

HUD   heads-up display 

HVT   high value target 

Hz   Hertz 

MMC   Multi-Modal Communication tool 

RPA   remotely piloted aircraft 

SAA   Sense-Assess-Augment 

SE   standard error 

SME   subject matter expert  

TLX   Task Load Index 

VEOG   vertical electrooculography 

VS   Vigilant Spirit 

 


